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Abstract. We investigate the convergence of the self-consistent field (SCF) iteration used to solve
a class of nonlinear eigenvalue problems. We show that for the class of problems considered, the SCF
iteration produces a sequence of approximate solutions that contain two convergent subsequences.
These subsequences may converge to two different limit points, neither of which is the solution to
the nonlinear eigenvalue problem. We identify the condition under which the SCF iteration becomes
a contractive fixed point iteration that guarantees its convergence. This condition is characterized by
an upper bound placed on a parameter that weighs the contribution from the nonlinear component
of the eigenvalue problem. We derive such a bound for the general case as well as for a special case
in which the dimension of the problem is 2.
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1. Introduction. We are concerned with the convergence of a numerical method
for solving the following type of nonlinear eigenvalue problem:

(1) H(X)X = XΛk,

where X ∈ Rn×k, XTX = Ik, H(X) ∈ Rn×n is a matrix that has a special structure
to be defined below, and Λk ∈ Rk×k is a diagonal matrix consisting of the k smallest
eigenvalues of H(X). This type of problem arises in electronic structure calculations
[10, 6]. The nonlinearity simply refers to the dependency of the matrix H on the eigen-
vector X to be computed. This dependency is expressed through a vector ρ(X) that
corresponds to the charge density of electrons in an electronic structure calculation.
This vector is defined as

(2) ρ(X) ≡ diag(XXT ),

where diag(A) denotes the vector containing the diagonal elements of the matrix A.
Given ρ(X), the matrix H(X) that we will consider in this paper is defined as

(3) H(X) = L + αDiag(L−1ρ(X)),

where L is a discrete Laplacian, Diag(x) (with an uppercase D) denotes a diagonal
matrix with x on its diagonal, and α is some known constant. In electronic structure
calculations, H(X) is often referred to as a single-particle Hamiltonian.
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The solution of (1) is also a global minimizer of the constrained minimization
problem

(4)
min E(X)
s.t. XTX = Ik,

where the objective function E(X) is defined by

(5) E(X) =
1

2
trace(XTLX) +

α

4
ρ(X)TL−1ρ(X).

In fact, it is not difficult to show that (1) and the orthonormality constraint
XTX = Ik form the first order necessary conditions for (4) [7].

The nonlinear eigenvalue problem defined by (1) and (3) is a simplification of the
Hartree–Fock (HF) and Kohn–Sham (KS) equations in electronic structure calcula-
tions [10, 6]. In particular, it contains a parameterized Hartree term ρTL−1ρ that is
present in both the HF and KS equations. But it does not contain the exchange term
in the HF model [10] or the exchange-correlation term in the KS model [6]. Although
our analysis is performed on this simplified model, the main results reveal some of the
fundamental properties of this type of problem and how the behavior of the algorithm
used to solve this type of problem changes with respect to the amount of nonlinearity
measured by the parameter α in (3).

The numerical method we will analyze is called the self-consistent field (SCF)
iteration. It is currently the most widely used algorithm for solving the HF and KS
equations. In each SCF iteration, one computes approximations to a few of the small-
est eigenvalues and the corresponding eigenvectors of a fixed Hamiltonian constructed
from the previous approximation to X; the computed eigenvector approximations are
used to update the Hamiltonian. When the difference between Hamiltonians con-
structed in two consecutive iterations is negligible, the SCF procedure is terminated,
and the eigenvectors of the last Hamiltonian are said to be self-consistent.

It is well known that the simplest version of SCF iteration, which we will carefully
describe in the next section, often fails to converge [5]. For certain types of Hamilto-
nians (e.g., HF and the one defined in (3)), the SCF iteration may eventually oscillate
between two limit points, neither of which satisfies (1). The convergence failure of the
SCF iteration is partially explained in [11] by viewing the SCF iteration as an indirect
minimization procedure that seeks the minimum of (4) by minimizing a sequence of
quadratic surrogates. Although the arguments and numerical examples presented in
[11] demonstrated that E(X) may not decrease monotonically in an SCF iteration,
they do not reveal the asymptotic convergence behavior of the SCF iteration.

In this paper, we will take a closer look at the SCF iteration and analyze its
convergence when used to solve (1). A brief overview of the algorithm is given in
section 2 along with a simple example that illustrates the convergence failure of the
SCF iteration for some choices of α used in (3). In section 3, we show that when
the SCF iteration fails to converge, the approximate eigenvectors X(i) produced in
the SCF iteration contain two subsequences that converge to two distinct limit points.
Neither of these limit points is a solution to (1). Our proof of this result is similar to an
earlier proof given by Cancès and Le Bris in [2]. We made a number of simplifications
to make it easier to follow. However, the subsequence convergence result does not give
the conditions under which the two subsequences are guaranteed to converge to the
solution of (1). Such a condition is identified in section 4. We will show that for n = 2,
the SCF iteration is guaranteed to converge when α < 3. For the more general case,
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SCF Iteration

Input: A discrete Laplacian L ∈ Rn×n; an initial guess X(0) for the eigen-
vector X ∈ Rn×k;

Output: X ∈ Rn×k such that X∗X = Ik and H(X)X = XΛk, where Λk

contains the k smallest eigenvalues of H(X).

1. For i = 1, 2, . . . until convergence
2. construct H(i) = H(X(i−1)) using (3);
3. compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i)

contains the k smallest eigenvalues of H(i);
4. end for

Fig. 1. The SCF iteration.

our main result provides an upper bound for α that depends on the minimum gap
between the kth and the k + 1st eigenvalues of H(X), the dimension of the problem,
and the norm of L−1.

Throughout this paper, we will use ‖ · ‖p to denote the p-norm [3] of either a
vector or a matrix. The Frobenius norm of a matrix is denoted by ‖ · ‖F .

2. The SCF iteration. In this section, we describe the SCF iteration and show
how it fails when it is applied to a 2 × 2 Hamiltonian (3) with a particular choice of
α.

The basic idea of an SCF iteration is to reduce the nonlinear eigenvalue problem
(1) to a sequence of linear eigenvalue problems that can be solved efficiently using
existing tools. Figure 1 shows the main steps of this procedure. The convergence of
the iteration can be monitored by computing the difference between charge densities
ρ(X) obtained in two consecutive iterations. The following example shows that the
simplest version of the SCF iteration fails to converge. In this example, we set

(6) L =

(
2 −1

−1 2

)
,

α = 12, and k = 1. As a result, X = (x1 x2)T with x1, x2 ∈ R such that x2
1 + x2

2 = 1,
and ρ(X) = (x2

1 x2
2)

T .
Due to the convexity and symmetry of E(x) (i.e., interchanging x1 and x2 does

not change the problem), the solution to the minimization problem (4), and hence the
nonlinear eigenvalue problem (1), must satisfy x1 = x2 =

√
2/2 or x1 = x2 = −

√
2/2.

However, when the initial guess of the desired eigenvector is chosen to be, for
example,

(7) X(0) =

(
0.1389
0.2028

)
,

the difference between the charge densities computed in two consecutive SCF itera-
tions does not converge to zero, as we can clearly see in Figure 2(a). Furthermore,
Figure 2(b) shows that the ratio between two components of ρ(X(i)) does not converge
to 1.
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(a) The change in charge density ∆ρ(i) ≡
‖ρ(X(i+1))−ρ(X(i))‖2 fails to converge to
zero.
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Fig. 2. The SCF iteration fails to converge when α = 12 in (3).
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Fig. 3. When α = 1.0, ∆ρ(i) converges rapidly to 0.

If we reduce α to 1, then SCF converges from any starting guess. Figure 3 shows
that the difference between charge densities computed in two consecutive SCF iter-
ations decreases rapidly towards zero in this case when (7) is used as the starting
guess. In section 4, we will show that for this 2 × 2 example, the convergence of SCF
can be guaranteed if α < 3.

3. Subsequence convergence in the SCF iteration. When the SCF itera-
tion fails to converge to the solution of (1), it produces a sequence of approximations
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(a) Odd iterations
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(b) Even iterations

Fig. 4. When α = 12, the charge density converges to two different limit points in odd and even
SCF iterations.

{X(i)} that do not become self-consistent as i increases. We have already seen this
phenomenon in Figure 2(a), where we plotted the norm of the change in ρ(X(i))
between two consecutive SCF iterations. In this case, it is clear that ‖∆ρ(X(i))‖2

does not converge to zero as i increases.
However, if we examine the subsequences {X(2i−1)} and {X(2i)} (i = 1, 2, . . .)

produced in the SCF iteration, we will see that they both converge to subspaces that
become self-consistent in every other iteration. Figure 4 shows that both

∆ρ(i)
odd ≡ ‖ρ(X(2i+1)) − ρ(X(2i−1))‖2 and ∆ρ(i)

even ≡ ‖ρ(X(2i+2)) − ρ(X(2i))‖2

converge to zero as i increases, although neither X(2i+1) nor X(2i+2) becomes a min-
imizer of E(X), as we can clearly see in Figure 2(b).

In [1] and [2] it was shown that such a phenomenon occurs in a more general
setting; i.e., when SCF fails to converge to the solution of the HF equation, the odd and
even subsequences of the approximations converge to two distinct limit points. This
analysis, which we will reproduce here with some modification, is based on examining
the convergence of the density matrix D(X) = XXT . It relies on the assumption that
there exists a gap δ between the kth and k + 1st eigenvalues of H(X) for all valid X,
an assumption that is referred to in [1] as the uniformly well posed (UWP) property.
The major result of [1] asserts that

∞∑

i=!

‖D(X(i+2)) −D(X(i))‖2
F < ∞

for any finite $ ≥ 0. Therefore, ‖D(X(i+2)) − D(X(i))‖F must converge to zero as i
increases.

In the analysis we present next, the subsequence convergence of the SCF iter-
ation is measured by the distance between two subspaces spanned by columns of
X ∈ Rn×k and Y ∈ Rn×k. We will use the standard distance measure defined in
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[3, Theorem 2.6.1, p. 76]; i.e., if XTX = Y TY = Ik,

dist(X,Y ) ≡ ‖ZTY ‖2,

where Z ∈ Rn×(n−k) is the orthogonal complement to X and ZTZ = In−k.
The following lemma, which is a block version of Lemma 11-9-8 in [8], shows that

dist(X,Y ) can, in general, be bounded in terms of trace(Y THY ) − trace(XTHX)
and the gap between the kth and k + 1st eigenvalues of H if columns of X consist of
eigenvectors associated with the k smallest eigenvalues of H and Y ∈ Rn×k satisfies
Y TY = Ik.

Lemma 1. Let λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of a symmetric matrix H ∈
Rn×n, and let columns of X be eigenvectors associated with λ1, λ2, . . . , λk. If λk+1 =
λk + δ for some δ > 0, then

(8) dist2(X,Y ) ≤ trace(Y THY ) − trace(XTHX)

δ

for any Y ∈ Rn×k such that Y TY = Ik.
Proof. Let columns Z ∈ Rn×(n−k) be eigenvectors associated with λk+1, λk+2, . . . ,

λn, and define Λk = Diag(λ1, λ2, . . . , λk) and Λn−k = Diag(λk+1, λk+2, . . . , λn). It
follows from the spectral decomposition of H that

trace(Y THY ) = trace[(Y TX)Λk(X
TY )] + trace[(Y TZ)Λn−k(Z

TY )].

Since λk+1 = λk + δ, we have λi ≥ λk + δ for i ≥ k + 1. Thus,

trace[(Y TZ)Λn−k(Z
TY )] ≥ (λk + δ)‖ZTY ‖2

F .

Consequently,

(9) trace(Y THY ) ≥ trace[(Y TX)Λk(X
TY )] + λk‖ZTY ‖2

F + δ‖ZTY ‖2
F .

Because W = (X,Z) defines an orthogonal transformation, we have

‖WTY ‖2
F = ‖Y ‖2

F = k.

Hence

(10) ‖ZTY ‖2
F = ‖WTY ‖2

F − ‖XTY ‖2
F = k − ‖XTY ‖2

F .

Substituting (10) into (9) and setting S = XTY yields

trace(Y THY ) ≥ trace(SΛkS
T ) + λk(k − ‖S‖2

F ) + δ‖ZTY ‖2
F

= λkk + trace[S(Λk − λkI)S
T ] + δ‖ZTY ‖2

F

= trace(Λk) + trace(λkI − Λk) + trace[(Λk − λkI)SS
T ] + δ‖ZTY ‖2

F

= trace(XTHX) + trace[(λkI − Λk)(I − SST )] + δ‖ZTY ‖2
F .

Because XTX = Y TY = Ik, the diagonal elements of SST are all less than or equal
to one. Hence

trace[(λkI − Λk)(I − SST )] ≥ 0.
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Therefore, we can now conclude that

trace(Y THY ) ≥ trace(XTHX) + δ‖ZTY ‖2
F

≥ trace(XTHX) + δ‖ZTY ‖2
2

= trace(XTHX) + δdist2(X,Y ).

Rearranging terms in the above inequality yields (8).
Our analysis of the subsequence convergence will make use of the auxiliary

function

(11) Ê(X,Y ) = trace(XTLX) + trace(Y TLY ) + αρ(X)TL−1ρ(Y ).

This function is similar to the one used in [1], which is defined in terms of density
matrices D(X) and D(Y ).

It is easy to verify that

ρ(X)TL−1ρ(Y ) = trace(XTDiag[L−1ρ(Y )]X) = trace(Y TDiag[L−1ρ(X)]Y ).

Thus, Ê(X,Y ) is clearly symmetric, i.e., Ê(X,Y ) = Ê(Y,X), and it can be expressed
alternatively as

Ê(X,Y ) = trace(XTH(Y )X) + trace(Y TLY )

= trace(Y TH(X)Y ) + trace(XTLX).(12)

We are now ready to show the main result, which we state formally in the following
theorem.

Theorem 1. Let X(0) ∈ Rn×k be the initial guess to the solution of the nonlinear

eigenvalue problem (1) that satisfies X(0)TX(0) = Ik. If columns of X(i) ∈ Rn×k

contain eigenvectors associated with the smallest k eigenvalues of H(X(i−1)), as we
would obtain when applying the SCF iteration to (1), and if the gap between the kth
and the k+1st eigenvalues of H(X(i)) is greater than or equal to δ > 0 for all i, then

(13)
m∑

i=0

dist2(X(i+2), X(i)) ≤ Ê(X(0), X(1)) − Ê(X(m+1), X(m+2))

δ
,

where Ê(·, ·) is the auxiliary function defined in (11).
Proof. The proof we give here is similar to that presented in [2]. To simplify nota-

tion, we will denote H(X(i+1)) by H. Because X(i+2) contains eigenvectors associated
with the smallest k eigenvalues of H, it follows from Lemma 1 that

trace(X(i+2)THX(i+2)) + δdist2(X(i+2), X(i)) ≤ trace(X(i)THX(i)).

Adding trace(X(i+1)TLX(i+1)) to both sides of the inequality above and invoking (12)
yields

Ê(X(i+1), X(i+2)) + δdist2(X(i+2), X(i)) ≤ Ê(X(i), X(i+1)).

Rearranging terms in the above inequality yields

dist2(X(i+2), X(i)) ≤ Ê(X(i), X(i+1)) − Ê(X(i+1), X(i+2))

δ
.

Summing over i yields the inequality (13).
Because Ê(X(m+1), X(m+2)) can be bounded by a constant for any m, and the

left-hand side of (13) is an increasing series, dist(X(i+2), X(i)) must converge to zero
as i → ∞.
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4. The convergence of SCF. Although the subsequence convergence analysis
characterizes what would happen when the SCF iteration fails to converge, it does not
give the conditions under which both the even and odd subsequences are guaranteed to
converge to the solution of (1). On the other hand, the numerical examples presented in
section 2 appear to indicate that the convergence of SCF for the 2 × 2 problem depends
on the value of α, which weighs the contribution of the nonlinear term Diag(L−1ρ(X))
in the Hamiltonian (3). In this section, we will provide a formal proof that this is
indeed true. We will prove that the SCF iteration is guaranteed to converge to the
solution of (1) from any starting point when α < αmax for some upper bound αmax.

Before we state and derive a general bound for α, we will first examine the con-
vergence of the 2 × 2 problem shown in section 2 because this problem is relatively
easy to analyze and because we can obtain a much tighter upper bound on α in this
special case.

In section 4.2, we will use a more sophisticated technique to derive an upper
bound for α that is more general but somewhat pessimistic.

4.1. The 2×2 case. Before we get to the main result, we will first show that the
ratio between the two components of the charge density oscillates around 1 regardless
of the choice of α. We will later show that the magnitude of the oscillation decreases
to zero when α is sufficiently small.

Lemma 2. Let y = (y1 y2)T be the eigenvector associated with the smallest
eigenvalue of H(X) defined in (3), where X = (x1 x2)T with |x1| > |x2|. If α > 0 in
(3), then |y2| > |y1|.

Proof. It is straightforward to write down the inverse of L defined in (6) and show
that

L−1ρ(X) =
1

3

(
2x2

1 + x2
2

x2
1 + 2x2

2

)
.

Consequently, the two diagonal elements in the second term of H(X) in (3) are simply

(14) β1 =
α

3
(2x2

1 + x2
2) and β2 =

α

3
(x2

1 + 2x2
2).

Suppose λ is an eigenvalue of H(X); then

(15) det

(
2 + β1 − λ −1

−1 2 + β2 − λ

)
= (2 + β1 − λ)(2 + β2 − λ) − 1 = 0.

If we let φ(λ) = (2 + β1 − λ)(2 + β2 − λ), then eigenvalues of H are solutions to the
equation φ(λ) = 1.

It is easy to see from (14) that

(16) β1 − β2 =
α

3
(x2

1 − x2
2) > 0,

since |x1| > |x2|. Therefore, the two eigenvalues of H(X), which are distinct roots of
the quadratic equation φ(λ) = 1, must satisfy

(17) λ1 < 2 + β2 < 2 + β1 < λ2.

Let y = (y1 y2)T be the eigenvector associated with λ1. It follows from H(X)y = λ1y
that

(18) (2 + β1 − λ1)y1 = y2.
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Because (17) implies 0 < 2 + β2 − λ1 < 2 + β1 − λ1, it follows from (15) that

2 + β1 − λ1 > 1.

Consequently, we can deduce from (18) that |y2| > |y1| > 0.
Lemma 3 confirms the observation we made in Figure 2(b), namely, that the ratio

between the first and second components of ρ oscillates around 1 in the SCF iteration.
The convergence of x1 and x2 to the optimal solution can be easily proved if we can
show that

|y2|
|y1|

<
|x1|
|x2|

when |x1| > |x2|,(19)

or

|y1|
|y2|

<
|x2|
|x1|

when |x2| > |x1|.(20)

Without loss of generality, we will establish the condition under which (19) holds.
However, before we do that, let us first express y2/y1 as a function of β1 − β2.

Lemma 3. If β1 and β2 are defined by (14), then

(21)
y2

y1
=

(β1 − β2) +
√

(β1 − β2)2 + 4

2
,

where y = (y1, y2)T is the eigenvector associated with the smallest eigenvalue of H(X).
Proof. Let δ = y2/y1 = 2 + β1 − λ1. It is easy to show that

2 + β2 − λ1 = δ − (β1 − β2).

Hence, it follows from (15) that

(22) δ2 − (β1 − β2)δ − 1 = 0.

Solving (22) for δ and taking the positive root yields (21).
Note that if x1 = x2 =

√
2/2, then β1 − β2 = 0. In this case, it follows from

(21) that y2/y1 = 1, which matches our intuitive expectation that the SCF iteration
should converge right away when the initial guess is the solution to (1).

The following theorem establishes the condition that guarantees the monotonic
convergence of the SCF iteration when the initial guess is not the solution to (1).

Theorem 2. Let X = (x1 x2)T be an initial guess of the solution to (1), where
H(X) is defined by (3), and let (y1 y2)T be the eigenvector associated with the smallest
eigenvalue of H(X). If |x1| > |x2|, then

(23)

∣∣∣∣
y2

y1

∣∣∣∣ <
∣∣∣∣
x1

x2

∣∣∣∣

when the parameter α in (3) satisfies

(24) 0 < α ≤ 3.

Proof. Applying the inequality
√

(β1 − β2)2 + 4 ≤ (β1 − β2) + 2 to (21) yields

y2

y1
≤ β1 − β2 + 1.
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If |x1| = 1 and x2 = 0, then |y2/y1| < ∞ = |x1/x2| for any choice of α > 0. Thus
(23) certainly holds when α satisfies (24).

If x2 += 0, it follows from (16) that

y2

y1
− 1 ≤ α

3
(x2

1 − x2
2)

=
α

3
(|x1| − |x2|)(|x1| + |x2|)

=
α

3

[
|x2|(|x1| + |x2|)

](∣∣∣∣
x1

x2

∣∣∣∣− 1

)

≤ α

3

(
x2

1 + x2
2

2
+ x2

2

)(∣∣∣∣
x1

x2

∣∣∣∣− 1

)

=
α

6
(1 + 2x2

2)

(∣∣∣∣
x1

x2

∣∣∣∣− 1

)
.

Since x2
1 + x2

2 = 1 and |x1| > |x2|, x2
2 must be less than 1/2. Consequently,

y2

y1
− 1 <

α

3

(∣∣∣∣
x1

x2

∣∣∣∣− 1

)
.

Thus (23) holds if α ≤ 3.
The upper bound for α established in Theorem 2 is slightly pessimistic because

our experiments show that the SCF iteration converges for α as large as 6.0. However,
it is not terribly loose because our experiments also show that convergence failure
occurs when α = 6.5.

4.2. The more general case. Our analysis of the SCF iteration for the 2 × 2
problem relies heavily on the symmetry property of the problem and the fact that
the solution to the nonlinear eigenvalue problem satisfies |x1| = |x2|. It is difficult to
apply this approach to the more general case in which n > 2 and k > 1.

Instead of tracking how eigenvectors of H(X) vary from one iteration to another,
we will focus in this section on the change in charge density ρ(X). We will use a tech-
nique developed in [9] to characterize the mapping between the input charge density
used to construct H(X) in (3) and the output charge density obtained directly from
the desired eigenvectors of H(X) via (2). We will show that under certain conditions
this mapping becomes a contraction when α < αmax for some αmax that depends on
the minimum gap between the kth and the k + 1st eigenvalues of H(X), the norm of
L−1, and the problem size n.

We will again assume that there is a gap between the kth and k+1st eigenvalues
of H(X) for all X ∈ Rn×k that satisfies XTX = Ik, and this gap is larger than some
lower bound δ > 0. (This is the UWP condition defined in [1].) The significance of
this gap will become clear in the following.

Suppose the eigenvalues of H(X) are

λ1 ≤ λ2 ≤ · · · ≤ λk < λk+1 ≤ · · · ≤ λn,

for a given X that satisfies XTX = Ik, and the corresponding eigenvectors are
y1, y2, . . . , yn. By definition, the density matrix associated with Y = (y1, y2, . . . , yk) is

D(Y ) = Y Y T .
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An alternative way to represent this density matrix is

D = ZΩZT ,

where Z = (y1, y2, . . . , yn) and Ω = Diag(1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0).

Because λk < λk+1, we can construct a filter function φ(λ) that satisfies

(25) φ(λ) =

{
1 for λ = λ1, λ2, . . . , λk,
0 for λ = λk+1, λk+2, . . . , λn.

If φ(λ) is continuous and differentiable, then we can represent the charge density,
which is normally defined as

ρ(Y ) = diag(D(Y )),

in an alternative form given by

ρ = diag(φ(H)).

If H is constructed from the charge density ρin, then

ρout = diag[φ(H(ρin))]

defines a mapping η from ρin to ρout, and this is the mapping implicitly constructed
at each SCF iteration.

We would like to identify the condition under which η becomes a contraction.
Such a condition will ensure that the SCF iteration converges to a fixed point of η
that is the solution to our nonlinear eigenvalue problem.

To seek such a condition, we will show that

(26) ‖η(ρ1) − η(ρ2)‖1 < γ‖ρ1 − ρ2‖1

for any ρ1 and ρ2 that satisfy the standard definition (2), and identify the requirement
under which γ < 1.

Constructing a proper filter function is the key to proving (26). We will choose
φ(t) to be a Fermi–Dirac distribution [4] of the form

(27) φ(t) = fµ(t) =
1

1 + eβ(t−µ)
,

where µ is implicitly determined by the input matrix argument to φ(t) and β > 0 is
a constant. To be specific, µ is the solution of the equation

(28) trace(φ(H)) = trace(fµ(H)) = k.

Because
∑n

i=1 fµ(λi) is monotonic with respect to µ for a fixed β, the solution to (28)
is unique for any choice of β and H. Figure 5 shows how Fermi–Dirac distributions
look with different β values and µ = 0. Notice that a larger β value leads to a sharper
drop-off of φ(t) from 1 to 0.

If the UWP condition holds, then there exists a constant β sufficiently large so
that (25) is fulfilled in finite precision arithmetic.
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Fig. 5. Fermi–Dirac distribution fµ(t) = 1
1+eβ(t−µ) for µ = 0.

Let H1 and H2 be Hamiltonians constructed from the charge densities ρ1 and ρ2,
respectively. It is easy to see that

‖η(ρ1) − η(ρ2)‖1 = ‖diag[fµ1(H1)] − diag[fµ2(H2)]‖1

≤ ‖diag[fµ1(H1) − fµ2(H1)]‖1 + ‖diag[fµ2(H1) − fµ2(H2)]‖1.(29)

Without loss of generality, let us assume µ1 ≥ µ2. As a result, fµ1(t) ≥ fµ2(t) for
any t. Hence

‖diag[fµ1(H1) − fµ2(H1)]‖1 = trace[fµ1(H1) − fµ2(H1)]

= trace[fµ1(H1)] − trace[fµ2(H1)].(30)

Since trace[fµ1(H1)] = trace[fµ2(H2)] = k, it is easy to see that

trace[fµ1(H1)] − trace[fµ2(H1)] = trace[fµ2(H2)] − trace[fµ2(H1)]

= trace[fµ2(H2) − fµ2(H1)]

≤ ‖diag[fµ2(H2) − fµ2(H1)]‖1.(31)

Consequently, it follows from (29), (30), and (31) that

‖η(ρ1) − η(ρ2)‖1 ≤ 2‖diag[fµ2(H2) − fµ2(H1)]‖1

≤ 2n‖fµ2(H2) − fµ2(H1)‖1.(32)

Now to show (26) and to derive an upper bound for α, all we need to do is show
that

‖fµ2(H2) − fµ2(H1)‖1 <
γ

2n
‖ρ1 − ρ2‖1

for some γ that is proportional to α. Before we do that, we will first prove the following
lemma, which allows us to establish a desirable relationship between fµ2(H2)−fµ2(H1)
and H2 −H1.
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Lemma 4. Let A,B ∈ Rn×n be two symmetric matrices, and let f(t) be the Fermi–
Dirac distribution defined in (27). Suppose A = VADAV T

A and B = VBDBV T
B are the

spectral decompositions of A and B, respectively, i.e., V T
A VA = V T

B VB = I and

DA =





λA
1

λA
2

. . .
λA
n




, DB =





λB
1

λB
2

. . .
λB
n




.

Then the identity

f(A) − f(B) = VA(C ,∆)V T
B

holds, where ∆ = V T
A (A−B)VB , the (j, k)th entry of the matrix C is defined by

Cj,k =






f(λA
j )−f(λB

k )

λA
j −λB

k
if λA

j += λB
k ,

f ′(λ) if λA
j = λB

k = λ,

and C ,∆ denotes the Hadamard product of C and ∆.
Proof. It follows from the matrix version of the Cauchy integral formula [3] that

(33) f(A) − f(B) =
1

2πi

∮

Γ
f(z)

[
(zI −A)−1 − (zI −B)−1

]
dz,

where Γ is a closed contour that contains the spectra of both A and B.
Using the identity

(zI −A)−1 − (zI −B)−1 = (zI −A)−1(A−B)(zI −B)−1,

we can express the right-hand side of (33) as

1

2πi

∮

Γ
f(z)VA(zI −DA)−1V T

A (A−B)VB(zI −DB)−1V T
B dz

=
1

2πi

∮

Γ
f(z)VA[(wA(z)wB(z)T ) ,∆]V T

B dz,(34)

where wA = diag[(zI −DA)−1], wB = diag[(zI −DB)−1].
Since the only term in (34) that contains z is wA(z)wB(z)T , it follows that

f(A) − f(B) = VA

[(
1

2πi

∮

Γ
f(z)wA(z)wB(z)T dz

)
,∆

]
V T
B .

Let

C =
1

2πi

∮

Γ
f(z)wA(z)wB(z)T dz.

It is easy to verify that the (j, k)th entry of C can be expressed as

(35) Cj,k =
1

2πi

∮

Γ

f(z)

(z − λA
j )(z − λB

k )
dz.
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If λA
j += λB

k , the expression above can be evaluated as

(36) Cj,k =
1

2πi

1

λA
j − λB

k

∮

Γ

(
f(z)

z − λA
j

− f(z)

z − λB
k

)
dz.

If λA
j = λB

k = λ, (35) becomes

(37) Cj,k =
1

2πi

∮

Γ

f(z)

(z − λ)2
dz.

Invoking the scalar version of the Cauchy integral formula in both (36) and (37), we
then obtain

Cj,k =






f(λA
j )−f(λB

k )

λA
j −λB

k
if λA

j += λB
k ,

f ′(λ) if λA
j = λB

k = λ.

Suppose H1 = X1Λ1XT
1 and H2 = X2Λ2XT

2 are the spectral decompositions of
H1 and H2, respectively. A direct application of Lemma 4 to H1 and H2 yields

‖fµ2(H2) − fµ2(H1)‖1 = ‖X2[C , (XT
2 (H2 −H1)X1)]X

T
1 ‖1

≤ n‖C , (XT
2 (H2 −H1)X1)‖1

≤ n2‖C‖1‖H2 −H1‖1

≤ αn2‖C‖1‖L−1‖1‖ρ2 − ρ1‖1.(38)

To establish an upper bound for ‖C‖1, we can use the mean value theorem and the
fact that

|f ′
µ(t)| =

∣∣∣∣
−βeβ(t−µ)

(1 + eβ(t−µ))2

∣∣∣∣ ≤
β

4

to first show that

max
j,k

|Cj,k| ≤ β/4.

It follows immediately that

(39) ‖C‖1 ≤ nβ/4.

Combining (32), (38), and (39), we obtain

‖η(ρ2) − η(ρ1)‖1 ≤ αn4β‖L−1‖1

2
‖ρ2 − ρ1‖1.

We can easily see that η is a contraction if α satisfies

(40) α <
2

n4β‖L−1‖1
.

It may seem surprising that the upper bound that ensures η(ρ) becomes a contrac-
tion depends on a parameter β that is present in neither the original eigenvalue prob-
lem (1) nor the description of the SCF iteration. However, if we go back to Figure 5
and recall that the choice of β is dictated by the smallest gap between λk(H) and
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λk+1(H) for all valid H matrices, then it becomes clear that the dependency of (40)
on β simply says that for problems in which the gap between λk(H) and λk+1(H)
is small, a smaller upper bound of α is required to ensure that the SCF iteration
converges from any starting point.

We should point out that the bound established in (40) is pessimistic. In par-
ticular, the n4 factor on the denominator, which is introduced by the use of a loose
inequality in (32) and the use of 1-norms to bound the norms of the orthogonal ma-
trices X1 and X2 in (38), is rather conservative. In our numerical experiments, we
observed that the SCF iteration may converge for α values that are much larger than
the right-hand side of (40). However, the qualitative behavior of the SCF iteration
seems to be correctly characterized by (40). Table 1 shows both the experimentally
observed largest α values (α1) for which the SCF iteration converges and the experi-
mentally observed smallest α values (α2) for which the SCF iteration fails to converge
for problems with different choices of n and k. The optimal bound lies within the inter-
val (α1, α2). We can clearly see that the optimal bound for α decreases as n increases.
For the same value of n, changing the value of k in Table 1 results in a change of the
gap λk+1 − λk. For each combination of n and k, the smallest gap among the various
choices of α’s that we experimented with is shown in Table 1. The last two rows of
Table 1 clearly indicate that for the same n, a smaller λk+1 − λk, which corresponds
to a larger β value in (40), leads to a more restrictive choice of α for which the SCF
iteration is guaranteed to converge.

Table 1
Observation from numerical experiments performed to determine the optimal bound for α. In

these experiments, the L matrix in (3) is constructed as the one-dimensional discrete Laplacian with
2 on the diagonal and −1 on the sub- and sup-diagonals. The dimension of the matrix is n. We
look for k smallest eigenvalues and the corresponding eigenvectors. The SCF iteration converges for
α ≤ α1 and fails to converge for α ≥ α2. This implies that the optimal bound for α lies in (α1, α2).
The spectral gap λk+1−λk listed here is smallest among all gaps associated with the different choices
of α values that we experimented with. These gaps were computed using a trust-region enabled SCF
iteration discussed in [11].

n k λk+1 − λk ‖L−1‖1 α1 α2

2 1 2.0 1.0 6.0 6.5
10 2 0.37 15.0 0.8 0.9
100 10 0.02 1275.0 0.05 0.06
100 4 0.0087 1275.0 0.002 0.0025

In general, the minimum gap between λk(H) and λk+1(H) is not known a priori.
However, when α is sufficiently small, we can estimate such a gap by calculating the
difference between the kth and k+ 1st eigenvalues of L. Such an estimate can in turn
be used to derive a suitable β value that would allow (27) to achieve the filtering effect
(25) in finite precision arithmetic.

5. Concluding remarks. We examined the convergence of the self-consistent
field (SCF) iteration used to solve a class of nonlinear eigenvalue problems defined
in (1). Our analysis shows that for this type of problem the SCF iteration produces
a sequence of approximate solutions X(i) that contain two convergent subsequences.
However, the limit points associated with these convergent subsequences may be dif-
ferent, as we demonstrated in a numerical example. We identified the condition under
which the SCF iteration becomes a contractive fixed point iteration that will converge
to the solution of the nonlinear eigenvalue problem. Our main result suggests that this
condition can be characterized by an upper bound placed on the parameter α in (1).
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In the most general case, the upper bound we derived characterizes the qualitative
behavior of the SCF iteration, although the bound itself is somewhat pessimistic.
When the dimension of the problem is 2× 2, we can give a much tighter bound using
a completely different technique. To generalize such a bound for the Hartree–Fock
(HF) or the Kohn–Sham (KS) problem, we need to analyze the relative contribution
of the exchange and exchange-correlation terms to the HF and KS Hamiltonians,
respectively. We will pursue such analysis in future research.
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